
Stanford
High School

Programming Contest

May 16, 2009

Problem Packet

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 2.1 Jinja Ninjas vs. Irate Pirates (page 1 of 1)

Overview: Output exactly what is given in the sample output below.

Description: Ninjabay, the world’s largest uberbytetorrent tracker based in Jinja,

Uganda, recently suffered a devastating loss at the hands of Tripoli’s
judicial court system. Throw in the current credit crunch and other
factors beyond its control, and Uberbytetorrent is now poised to lose a
whopping fifty percent of its revenue this quarter. And all because some
random employees from Ninjabay wanted to pick a fight with a band of
innocent-looking pirates…

Needless to say, Uberbytetorrent is not pleased. Many a quasi-legal
company might simply cut their losses and move on, but Uberbytetorrent
has never been, and never will be, Just Another Company.

Demonstrating a dubious amount of professionalism, the president of
Uberbytetorrent decided to exact revenge on the hapless Ninjabay
employees who caused this entire mess, but unfortunately experienced
a burst of guilt right after phoning his BFF, Chicago’s most notorious
mafia boss.

As such, he would like to give the employees a chance to leave
Ninjabay and work for him instead. The mafia goons have been
instructed to transmit a particular message to all of the employees, but
alas, the vast majority of them are high school dropouts who have never
heard of computer science. And this is where you come in: write a
program to output the given message exactly, and your life just might be
spared. Stay safe!

Time Allocation: 1 second

Input: None

Output: The output should consist of two lines of text, formatted exactly like the

sample output given below.

Assumptions: No input will be given.

Sample Output: I\n a\n i\na\ne e\ra, o\bey \no o\ne o\n ou\r i\n\te\r\ne\t;

\tu\r\n \to U\be\r\by\te\to\r\re\n\t.

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 2.2 Nitwitter (page 1 of 1)

Overview: Check if a base ten number is a power of two.

Description: Nitwitter, the fastest growing microblogging site around, recently hired

several aliens from the enchanted planet of Tarnia to market its services
to the inhabitants of Tarnia. The fact that each alien only has two fingers
and no mouths makes interspecies communication somewhat difficult.
However, a group of industrious researchers at Nitwitter has developed
a revolutionary method of passing colored tokens back and forth
between the species to convey information.

Tokens are carefully stacked and packed into boxes before being
shipped to the destination planet. For storage purposes, it is optimal to
begin transportation for n tokens, where n is a power of two. In fact, if n
were not a power of two, such transportation would be virtually
impossible. As an example, 32 (i.e. 25) tokens could be easily
transported, but sending 37 (i.e. 25 + 5) tokens would be daunting task
that not even the brave of researchers at Nitwitter dare tackle.

Nitwitter needs your help to determine whether a given number of
tokens could be easily sent to Tarnia. You should read in the proposed
number n of tokens from the console, and output yes if n is an integral
power of two, and no otherwise. Good luck!

Time Allocation: 1 second

Input: The input consists of a single integer n, signifying the number of

proposed tokens Nitwitter desires to ship to Tarnia.

Output: The output should consist of a single lowercase word, either yes or no,

indicating whether n is an integral power of two.

The output is to be formatted exactly like the sample output given below.

Assumptions: n will be an integer between 1 and 65,536, inclusive.

An integral power of two is defined as any integer m of the form 2x,
where x is an integer greater than or equal to 0.
All input will be valid.

Sample Input #1: 1

Sample Output #1: yes

Sample Input #2: 13

Sample Output #2: no

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 2.3 ATnTA (page 1 of 1)

Overview: Verify if the letters in a string form a palindrome.

Description: Communications company ATnTA has been responsible for handling a

lot of the traffic on the Internet. However, more and more information is
being sent online, and all the data has been clogging the Tubes
recently. In order to make sure that their data is getting transmitted
correctly, ATnTA has decided to send their data in redundant
palindromic form. That way, it is possible to check if the data arrived
correctly, by going through it backwards and verifying that it's the same
in reverse.

A word is a palindrome (i.e. is palindromic) if it is a word which remains
unchanged when its letters are reversed. For this problem, ATnTA
considers a palindrome to be any string whose letters form a
palindrome. Thus, the string should become a palindromic word after

1) removing spaces, and
2) converting every letter to lowercase.

Thus, the following are palindromes:
• A man a plan a canal Panama

• ProCo is I O Corp

• Sq a blooL baQs

• Hannah

• RaCeCAR

Time Allocation: 1 second

Input: The input consists of a string c on a single line.

Output: The output should consist of a single word yes or no, indicating whether

c becomes a palindromic word after removing all spaces and converting
every letter to lowercase.

The output is to be formatted exactly like the sample output given below.

Assumptions: c will contain between 1 and 1,000,000 characters, inclusive.

c will contain only uppercase and lowercase letters and spaces.
c will begin and end with a letter.
All input will be valid.

Sample Input #1: Go hang a salami I m a lasagna hog

Sample Output #1: yes

Sample Input #2: Reversed deserver

Sample Output #2: no

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 2.4 Most Ostentatiously Dressed Employee (page 1 of 1)

Overview: Find the most frequently occurring element in a list.

Description: Moogle, the world’s fastest search engine and provider of a host of web

applications that have nothing to do with web search, is determined to
reclaim its #1 position on Fortune’s Best Companies to Work For list
after being replaced by some upstart company that stores and manages
network data. To improve the Moogler experience and generate more
press, Moogle has decided to hold a company-wide beauty contest, in
which each employee votes for which Moogler they find most attractive.

Unfortunately, California’s first summer blackout of the year hit just as
the program to tabulate results was running, permanently frying one of
Moogle’s indestructible servers and killing the program that was running.

You are interviewing for a software engineering position at Moogle, and
as the final question, you have been asked to reconstruct the program
that was used to determine the winner for the beauty contest. Do you
have what it takes to become a Moogler?

Time Allocation: 1 second

Input: The first line contains two integers n m, separated by a single space,

where n is the number of votes that were cast, and m is the number of
employees currently at Moogle. The next n lines each contain one
positive integer j, representing a vote for Moogle’s j-th employee.

Output: The output should consist of a single integer w, representing the

employee number of the person with the most votes.

The output is to be formatted exactly like the sample output given below.

Assumptions: n will be an integer between 1 and m, inclusive.

m will be an integer between 1 and 100,000, inclusive.
Each j will be an integer between 1 and m, inclusive.
There will be exactly one employee with the most votes.
All input will be valid.

Sample Input #1: 9 15

11

2

5

2

7

10

3

7

7

Sample Input #2: 9 10

1

2

3

2

2

3

1

1

1

Sample Output #1: 7 Sample Output #2: 1

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 2.5 Snazzy snApply snuppercase (page 1 of 1)

Overview: Capitalize every word.

Description: snApple recently held its biannual Bring Your Daughter to Work day,

during which hordes of young, wide-eyed schoolgirls follow their parents
around and try not to destroy everything in sight.

Unfortunately for the snIphone division, one vindictive second grader
who failed her spelling and grammar quiz last Tuesday (and was fearful
of her chances of getting into Stanford as a result) was on a mission: to
destroy the evil of Capital Letters, for once and for all.

Truly the daughter of two revered software engineers, the girl released a
virus on all snIphone department computers that turned every sentence
on the snIphone Application Store site to lowercase. Eve Mobs, the
CEO and founder of snApple, is appalled by the aesthetically
displeasing result and is desperately in need of a solution!

Kind soul that you are, you have generously volunteered to fix this
problem for her, and in an effort to compensate for the missing capital
letters, you plan to capitalize the first letter of each and every word
instead. Good luck!

Time Allocation: 1 second

Input: The input consists of a single sentence s on one line. s may contain any

number of words. Adjacent words are separated by a single space.

Output: The output should consist of the input s with the first character of each

word capitalized.

The output is to be formatted exactly like the sample output given below.

Assumptions: s will contain between 1 and 1000 characters, inclusive.

s will contain only spaces and the lowercase alphabet letters a-z.
s will begin and end with a letter.
All input will be valid.

Sample Input #1: we provide great gifts for every occasion

Sample Output #1: We Provide Great Gifts For Every Occasion

Sample Input #2: stanford students receive a discount

Sample Output #2: Stanford Students Receive A Discount

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 5.1 Stock-Revealing Backroom Dealing (page 1 of 1)

Overview: Interactively guess a number based on knowledge that the desired

number is less than, greater than, or equal to the guesses.

Description: Nagilent and PAMD, both well-established companies in the technology

industry, are considering the possibility of merging. The CEO of Nagilent
is bartering some Nagilent stock for PAMD stock with the CEO of
PAMD, in order to artificially boost stock trading for both companies. It is
possible for the two CEOs to trade anywhere from 1 to n shares of
stock, but the CEO of PAMD only wants to trade an unknown number m
shares of stock and will only tell the CEO of Nagilent whether his offer is
too high, too low, or right on the dot. The CEO of Nagilent has requested
your assistance in this latest endeavor of questionable business ethics.

After we give you n, you are allowed to query us about any number x
within the range of 1 to n and we will tell you if m is less than, equal to,
or greater than x. Your task is to use this information to successfully
query m. Good luck!

Time Allocation: 1 second

Input/Output: This is an interactive problem. This means that your program will receive

input from the grading environment based on the output your program
produces. All input and output will be done through the console.

Rules of interaction:

1. Your program should begin by reading in a single integer n.
2. Then your program should output an integer x, representing a

query about the hidden integer m.
3. You MUST output a new line character and flush the output

stream after each output!
4. Each query will result in an integer response k, which will be

either -1, 0, or 1, where -1 indicates that m is less than x, 1
indicates that m is greater than x, and 0 indicates that you have
successfully queried m.

5. You can make as many queries as you want, but your program
should terminate after m has been successfully queried.

Assumptions and
Expectations:

n will be an integer from 1 to 1,000,000,000 inclusive.
m will be an integer from 1 to n, inclusive.
x must be an integer from 1 to n, inclusive.
If any output is invalid, your program will be deemed incorrect.

Sample Run: Input: 4

 Output: 2

 Input: 1

 Output: 3

 Input: 0

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 5.2 All Yar Whole World Are Belong To YaWho? (page 1 of 1)

Overview: Determine whether a given string is a substring of another.

Description: YaWho?, in desperation to out-compete its rival search engine Moogle,

has decided to implement a new system to guess search terms from
poorly spelled user input. After several studies of search terms, YaWho?
has determined that the most common user typo is adding additional
characters to the search phrase. They already have a program to guess
possible words based on incorrectly spelled input, but they need you to
write a program to verify whether or not a given word is a possible
search term.

A word is a possible search term only if all of its letters appear in order
within the search phrase, but the characters do not need to be adjacent
to each other. For example, abc and abd are possible search terms for
the search phrase abcd, but cde and bca are not.

Time Allocation: 1 second

Input: The first line contains the string s, which represents the search phrase.

The second line contains the string t, which represents the search term
under consideration.

Output: The output should consist of a single lowercase word, either yes or no,

indicating whether t is a substring of s.

The output is to be formatted exactly like the sample output given below.

Assumptions: s and t will contain between 1 and 1000 characters, inclusive.

s will contain only lowercase letters and spaces.
t will contain only lowercase letters (no spaces).
s and t will each begin and end with a letter.
All input will be valid.

Sample Input #1: stanford proco

foo

Sample Output #1: yes

Sample Input #2: stanford proco

bar

Sample Output #2: no

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 5.3 See No Evil, Speak No Evil (page 1 of 1)

Overview: Compute the n-th look-say-reverse number.

Description: Great news! The jRobot Corporation, widely celebrated for its self-

vacuuming Zoomba robot, is on the verge of completing its prototype
LISA (Lactose Intolerant Super Automaton) robot, a friendly, self-
learning machine that is sure to win even the most skeptical of
technophobes over with its human-like charms.

But the research team seems to have run into a slight snag: while the
rate of LISA’s emotional development is off the charts, she has formed
an odd affinity for look-say numbers, and the rest of her mathematical
processes have shut down. LISA is well aware of this problem and is
dangerously close to self-destructing in desperation. To prevent this
catastrophe from occurring, you have been hired to repair LISA’s glitch.

Clearly, the best course of action is to reverse LISA’s fondness for look-
say numbers by having her develop an attachment for “look-say-
reverse” numbers as well and having the attachments cancel each other
out. To introduce these numbers to her, you have been asked to
generate the n-th look-say-reverse number. Are you up to the task?

The first look-say-reverse numbers are 1, 11, 12, 2111, 1321, 11213111,
and 1331112112. If we know a look-say-reverse number, we can get the
next one by splitting the number into consecutive runs of identical digits
(so 11213111 becomes “11 2 1 3 111”), saying how many of each digit
there are (e.g., “two 1, one 2, one 1, one 3, three 1”), writing this down
as a new number (“2112111331”), and reversing it (to get 1331112112).

Time Allocation: 1 second

Input: The input consists of a single integer n.

Output: The output should consists of a string s on one line, representing the

n-th look-say-reverse number.

The output is to be formatted exactly like the sample output given below.

Assumptions: n will be an integer between 1 and 49, inclusive.

s will contain no more than 1,000,000 digits.
All input will be valid.

Sample Input #1: 4

Sample Output #1: 2111

Sample Input #2: 7

Sample Output #2: 1331112112

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 5.4 Livebold's Lapse: A Powerful Predicament (page 1 of 1)

Overview: Print out all the powerful numbers within a range of integers.

Description: Voting machine company Livebold has discovered a security hole in

their machines! In 2008, a few nefarious individuals discovered that
certain numeric passcodes would allow access to vote counts for
districts all across the country. As it turns out, these special numbers,
called powerful numbers, all have a certain property.

A powerful number is a positive integer m, such that for every prime
number p dividing m, p2 also divides m. In order to fix this breach,
Livebold needs to be able to find all the powerful numbers in a certain
range, and they have enlisted you to help. The fate of American
democracy lies in your capable hands!

Time Allocation: 1 second

Input: The first line contains an integer a, representing the lower bound of the

range. The second line contains an integer b, representing the upper
bound of the range.

Output: The output should be a listing of all the powerful numbers between a

and b, inclusive. Each powerful number should be on a separate line.

The output is to be formatted exactly like the sample output given below.

Assumptions: a will be an integer between 1 and 100,000, inclusive.

b will be an integer between a and 100,000, inclusive.
All input will be valid.

Sample Input #1: 30

80

Sample Output #1: 32

36

49

64

72

Sample Input #2: 110

190

Sample Output #2: 121

125

128

144

169

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 5.5 Viral Spiral: A Concern at CERN (page 1 of 1)

Overview: Output the sum of all neighbors of a cell in an n x n number spiral.

Description: The aptly-named Spiroviro virus has infected the computer grid at

CERN. Starting from the northwest corner of the basement computer
cluster, Spiroviro proceeds to spread clockwise along the computers on
the edge, which have lower priority access to the networked antivirus
scan. Each new infection causes exactly one more damage than the
last, as measured by a special BleederMeterReader.

Given a size n and a computer at location (x, y), where x increases to
the south and y increases to the east, help CERN determine the sum of
the damage dealt by Spiroviro to neighboring computers. For example,
for n = 5, the computer grid would exhibit a damage pattern of

 1 2 3 4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

with (1, 1) = 1, (3, 5) = 7, and (4, 2) = 23. Neighboring computers are
defined in the cardinal directions. That is, the neighbors of (1, 1) are (1,
2) and (2, 1); the neighbors of (4, 2) are (3, 2), (4, 1), (4, 3), and (5, 2).

Time Allocation: 1 second

Input: The first line contains an integer n, representing the side length of the

square computer grid. The second line contains two integers x y,
separated by exactly one space.

Output: The output should consist of a single integer k representing the sum of

the damages dealt to all computers neighboring the (x, y) location in the
n x n computer grid.

The output is to be formatted exactly like the sample output given below.

Assumptions: n will be an integer between 1 and 1000, inclusive.

x and y will each be an integer between 1 and n, inclusive.
k will be an integer between 1 and 4,000,000, inclusive.
All input will be valid.

Sample Input #1: 5

4 2

Sample Output #1: 72

Sample Input #2: 5

4 1

Sample Output #2: 51

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.1 Pewlett Hackered Printer Problem (page 1 of 2)

Overview: Interactively find the missing number in an array by querying bits.

Description: Pewlett Hackered (PH), the famous printer company, just released the

brand-new PH-x series! These printers can print a bedazzling variety of
colors. The PH-x256, for example, has 256 cartridges of colors,
numbered 0 through 255. In order to maintain their vibrant PH-level of
printing and keep shady companies from producing imitations, the
cartridges are arranged in a random order inside the printer.

You recently purchased a PH-xn printer containing n cartridges, but it
seems that some PH employees fell asleep on the job, so exactly one
random cartridge of every new PH-x printer is missing from each model
(including your PH-xn printer). The super-sensitive security mechanisms
prevent anyone from opening the printer after it has been manufactured,
so you can't look inside to find the number of the missing cartridge.

However, it turns out that it is actually possible to find out information
about the cartridges by querying the printer for a bit of information at a
time. This can be done up to 2n times on a PH-xn until the patented PH-
Copy-Safe™ self-destruct mechanism activates. Can you find the
number of the missing cartridge and salvage your printer?

Each PH-xn printer is designed to contain exactly n cartridges in random
order, where n is a power of 2. Inside a broken PH-xn printer, exactly
one cartridge is missing, so there are only n-1 cartridges present. The
cartridges are stored in a secret array with n-1 distinct integers from 0
through n-1. Your program must find out which cartridge number is
missing by querying the j-th binary digit of the i-th array element. We will
return the j-th digit indexing from the least significant digit (i.e. counting
digits from the right) at 0. You can make up to 2n queries, after which
you must output the number of the missing cartridge.

For example, consider the array {1, 3, 0, 7, 2, 5, 4} for n=8 and m=6. In
binary, this array holds {001, 011, 000, 111, 010, 101, 100}. Here are
some sample queries (output) and responses (input):
Output Secret array (behind the scenes) Input
0 0 {001, 011, 000, 111, 010, 101, 100} 1

4 0 {001, 011, 000, 111, 010, 101, 100} 0

4 1 {001, 011, 000, 111, 010, 101, 100} 1

4 2 {001, 011, 000, 111, 010, 101, 100} 0

6 2 {001, 011, 000, 111, 010, 101, 100} 1
7 2 {001, 011, 000, 111, 010, 101, 100} Program terminated

(Out of bounds)
-1 0 {001, 011, 000, 111, 010, 101, 100} Program terminated
3 8 {001, 011, 000, 111, 010, 101, 100} 0 (All numbers have

infinite leading 0’s)
3 -1 {001, 011, 000, 111, 010, 101, 100} Program terminated

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.1 Pewlett Hackered Printer Problem (page 2 of 2)

Time Allocation: 1 second

Input/Output: This is an interactive problem. This means that your program will receive

input from the grading environment based on the output your program
produces. All input and output will be done through the console.

Rules of interaction:

1. Your program should begin by reading in a single integer n.
2. Then, for each of up to 2n queries, your program should output a

single pair of integers i j, separated by a single space.
3. You MUST output a new line character and flush the output

stream after each output!
4. Each query will result in an integer response k, representing the

j-th binary digit of the i-th element of the secret array.
5. At any time in place of the 2n queries, or immediately following

the 2n-th query, your program may output a single integer m
representing the missing cartridge. This should be the final output
from your program.

Assumptions and
Expectations:

n will be an integral power of 2, from 2 to 4096, inclusive.
i should be an integer between 0 and n-2, inclusive.
j should be an integer greater than or equal to 0.
The response k will be either 0 or 1.
If any output is invalid, your program will be deemed incorrect.
Only one attempt at m is allowed.
No more than 2n queries will be accepted. After 2n queries, your
program must output a single integer m. Otherwise, your program will be
terminated and deemed incorrect.

Sample Run: Input: 4

 Output: 0 0

 Input: 1

 Output: 0 1

 Input: 1

 Output: 1 0

 Input: 0

 Output: 1 1

 Input: 0

 Output: 2 0

 Input: 0

 Output: 2 1

 Input: 1

 Output: 1

 (The cartridge array was {3, 0, 2}, or {11, 00, 10} in binary.)

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.2 Big Green, Bankruptcy, and the Giant Maze of Doom (page 1 of 2)

Overview: Find the length of the shortest path between two locations in a maze of

numbers.

Description: Big Green corporation really, really doesn’t want to file for Chapter 7

bankruptcy. In desperation, it has decided to kidnap employees from
rival corporations and give them an offer they can’t refuse: sabotage the
companies they work for, or get thrown into the Giant Maze of Doom
(GMD). For decades, many believed the GMD to be a mere urban
legend, one of those stories mothers told their children back in the day
to keep them in line. Alas, for the handful of loyal software engineers
from the rival corporation, the GMD is, without a doubt, pure reality.

The GMD is divided into r rows and c columns of squares. There is an
integer on each square, representing the number of squares the
engineers must move in any cardinal direction (up, down, left, or right) to
avoid the land mines and fire-breathing dragons. Surrounding the GMD
is a bottomless pit, so moving past the edge of the maze is not
recommended. If a move would put an engineer out of bounds, he or
she cannot move at all in the direction.

But however bleak life is looking for these faithful employees, hope is in
the air! If the engineers land on a special square, a trapdoor will be
revealed and they will fall back into the real world. As one of these
trustworthy engineers, you are the only one with a laptop, and thus the
only one that can write a program that will determine the minimum
number of moves necessary to escape the GMD and spread news of
Big Green’s evil plans to the world. The fate of our technological future
rests in your hands – good luck!

Consider the following 3 x 5 GMD configuration:

12123

02314

21235

Locations (x, y) are numbered starting at (1, 1) in the upper-left corner,
with x increasing down and y increasing to the right. Some locations and
their valid moves are listed below:
Location Value Valid moves
(1, 1) 1 Right (1, 2); down (2, 1)
(3, 3) 2 Left (3, 1); up (1, 3); right (3, 5)
(2, 5) 4 Left (2, 1)
(2, 4) 1 Left (2, 2); up (1, 3); right (2, 4); down (3, 3)

(2, 3) 3 None
(2, 1) 0 None
(3, 5) 5 None

The minimum number of moves from (1, 1) to (3, 5) is 4: right (1, 2),
down (3, 2), right (3, 3), right (3, 5).

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.2 Big Green, Bankruptcy, and the Giant Maze of Doom (page 2 of 2)

Time Allocation: 1 second

Input: The first line of the input contains two integers r c, separated by exactly

one space, representing the number of rows and columns in the maze.

The next r lines each contain a string of c integers, representing the
sequence of values in each location of the r-th row of the maze.

The next line contains two integers xstart ystart, separated by exactly one
space, representing the row and column index of the starting location.

The last line contains two integers xend yend, separated by exactly one
space, representing the row and column index of the ending location.

Output: The output should consist of a single integer k representing the number

of moves needed to get from the starting location to the ending location.

If the starting and ending locations are the same, output 0. If there is no
possible path from the starting to the ending location, output -1.

The output is to be formatted exactly like the sample output given below.

Assumptions: r and c will each be an integer between 1 and 100, inclusive.

The sequence of digits will contain only the digits 0123456789, with each
digit representing exactly one square.
xstart, ystart, xend, and yend will each be between 1 and 100, inclusive. The
starting location and ending location may be the same.
All input will be valid.

Sample Input #1: 2 2

11

01

1 1

2 2

Sample Output #1: 2

Sample Input #2: 3 4

1023

0112

3211

1 1

1 3

Sample Output #2: -1

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.3 Deranged Derangements (page 1 of 1)

Overview: Print out the k-th lexicographical derangement of the first n letters.

Description: MyFace (MyFace makes the world a better place!), the fastest growing

online social network, is rolling out a new version of their online social
networking website interface. As per tradition, every feature must be
placed in a different location on the web page than in the previous
version for maximum customer confusion. There is a certain number n
of features, up to 26, conveniently labeled A, B, C, D, etc. From these
features, there are a finite number of rearrangements, specifically called
derangements, that can be made.

Derangements are permutations of a sequence where each letter in the
permutation is not in the same location as in the starting sequence. For
example, the derangements of ABCD in lexicographical (alphabetical)
order are BADC, BCDA, BDAC, CADB, CDAB, CDBA, DABC, DCAB,
and DCBA. ACBD is not a derangement because the A is in the same
location as the A in ABCD. Your task is to find the k-th lexicographical
(in alphabetical order) derangement of MyFace features. The future look
of MyFace depends on you, so be careful!

Time Allocation: 1 second

Input: The first line contains an integer n, indicating that the starting sequence

is the first n uppercase letters in alphabetical order. The second line
contains the integer k.

Output: The output should contain a single string of n uppercase letters

representing the k-th lexicographical derangement of the starting
sequence. Indexing begins at 1 (the first derangement has k equal to 1;
the second derangement has k equal to 2, etc.)

The output is to be formatted exactly like the sample output given below.

Assumptions: n will be an integer between 2 and 26, inclusive.

k will be an integer between 1 and 100,000, inclusive.
There will be at least k valid derangements for the given n.
All input will be valid.

Sample Input #1: 4

6

Sample Output #1: CDBA

Sample Input #2: 9

333

Sample Output #2: BAECGHDIF

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.4 Not So Boring Contest Scoring (page 1 of 2)

Overview: Sort contestants based on total score and output their ranking.

Description: In an effort to boost its 2% yield rate, the Underwater Basket Weaving

Institute of Technology (UBWIT) is holding its first ever basket weaving
contest (BWC). Renowned basket weavers from all over the world have
left their underground hobbit holes to attend this prestigious event.

As underwater basket weaving is a challenging and dangerous activity,
the BWC designed problems of three different levels of difficulty in order
to cater to a wide range of aspiring basket weavers and to minimize
human casualties. The problems are divided into categories of two-,
five-, and nine- point problems, with ranks being decided by highest total
score. Ties are broken by the most nine-pointers, followed by the most
five-pointers, and then the most two-pointers.

Unfortunately, the even more prestigious Underwater Basket Weaving
Polytechnic Institute (UBWPI), angry and confused by the fact that
UBWIT is finally taking some initiative, has publicly expressed their
intentions to sabotage the contest, so UBWIT must tabulate the results
as quickly as possible before UBWPI tinkers with them.

As the only student at UBWIT that is not specializing in basket weaving
(and therefore not participating in this competition), the job of stopping
UBWPI and writing a program that will calculate the contest results has
fallen to you. Best of luck – the fate of UBWIT rests in your hands.

Time Allocation: 1 second

Input: The first line contains an integer k, representing the number of teams

that are participating in BWC. The next k lines will each contain a single-
word name s, followed by three integers t f n, each separated by exactly
one space, representing the number of two-, five-, and nine- point
problems solved by contestant s, respectively.

Output: The output should contain k lines of output, with each line containing a

single-word contestant name. Print the contestants in decreasing order
of performance, starting at first place.

The output is to be formatted exactly like the sample output given below.

Assumptions: k will be an integer between 1 and 100, inclusive.

s will be no longer than 50 characters and will contain only the
uppercase and lowercase characters A-Z and a-z.
t, f, and n will each be an integer between 0 and 5, inclusive.
No two contestants will solve exactly the same number of two-, five-,
and nine-pointers. That is, all ties can be broken.
All input will be valid.

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.4 Not So Boring Contest Scoring (page 2 of 2)

Sample Input #1: 5

Coil 3 3 3

Yucca 3 2 4

Twine 4 5 2

Wicker 0 2 5

Split 5 2 3

Sample Output #1: Wicker

Yucca

Twine

Coil

Split

Sample Input #2: 2

Whale 5 5 4

Porcupine 3 4 5

Sample Output #2: Porcupine

Whale

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.5 Matching Pears (page 1 of 2)

Overview: Compute the maximum number of pears that can be ripened given

limited resources.

Description: Omega-Pears is a rather strange company specializing in the lucrative

pear-ripening business. Pears ripen upon exposure to ethylene, and
Omega-Pears analyzes each pear to determine the optimal range of
ethylene exposure.

Through careful testing, Omega-Pears has determined the optimal
ripening ranges for each of the n pears in its most recent batch. The i-th
pear will ripen optimally in any ethylene concentration between the a
minimum concentration of mini and the maximum concentration maxi.

The company’s laboratory has room for m different ripening chambers.
The j-th chamber has an ethylene concentration of ej and can hold up to
cj different pears. Pears ripen independently; that is, placing multiple
pears into the same chamber will not affect the ripening process of other
pears in the same chamber. Each pear can only be placed in one
chamber, but not all chambers need be used.

Omega-Pears meet strict deadlines and has time for only one round of
pear ripening. Omega-Pears has enlisted your help to match the pears
to the available ripening chambers so that the maximum number of
pears ripen. Good luck!

Time Allocation: 1 second

Input: The first line contains a single integer n, representing the number of

pears.

The next n lines each contains two integers minj maxj, separated by
exactly one space, representing the minimum and maximum ethylene
concentrations allowed for pear j.

The next line contains a single integer m, representing the number of
ripening chambers.

The next m lines will each contain two integers ek ck, separated by
exactly one space, representing the ethylene concentration and pear
capacity of ripening chamber k.

Output: The output should consist of a single integer r, representing the

maximum number of pears that can be ripened given the above
conditions.

The output is to be formatted exactly like the sample output given below.

Stanford High School Programming Contest – ProCo May 16, 2009

Problem 9.5 Matching Pears (page 2 of 2)

Assumptions: n and m will each be an integer between 1 and 2009, inclusive.

minj will be an integer between 1 and 1000, inclusive.
maxj will be an integer between mini and 1000, inclusive.
ek will be an integer between 1 and 1000, inclusive.
ck will be an integer between 1 and 2009, inclusive.
Multiple pears may have the same minj and maxj.
No two chambers will have the same ek.
r will be an integer between 0 and n, inclusive.
All input will be valid.

Sample Input #1: 3

1 3

2 5

3 4

3

2 3

3 1

4 3

Sample Output #1: 3

Sample Input #2: 6

1 2

2 3

3 3

1 2

5 7

6 7

2

4 3

8 2

Sample Output #2: 0

